Abstract

A combined backstepping and adaptive fuzzy PID approach for a nonholonomic autonomous mobile robot to follow the desired path is proposed in this paper. Two adaptive fuzzy PID controllers are adopted at the dynamic control level for velocity tracking and steering control of the robot. The fuzzy PID controller consists of a PID controller which is designed by a trial-and-error approach, optimized using the cross-entropy method, and a fuzzy controller based on relational models with two inputs and three outputs. Adaptive adjustment of the PID controllers is implemented by means of the fuzzy controllers. The pose deviations of the robot when trajectory tracking will be eliminated by the backstepping control technique at the kinematic level using a kinematic model. The simulation validation results demonstrate that the proposed control system can offer good performances for the robot in terms of small distance error, rapid response, high stability, and trajectory tracking more accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.