Abstract
Weakly interacting massive particles are a widely well-probed dark matter candidate by the dark matter direct detection experiments. Theoretically, there are a large number of ultraviolet completed models that consist of a weakly interacting massive particle dark matter. The variety of models makes the comparison with the direct detection data complicated and often non-trivial. To overcome this, in the non-relativistic limit, the effective theory was developed in the literature which works very well to significantly reduce the complexity of dark matter-nucleon interactions and to better study the nuclear response functions. In the effective theory framework for a spin-1/2 dark matter, we combine three independent likelihood functions from the latest PandaX, LUX, and XENON1T data, and give a joint limit on each effective coupling. The astrophysical uncertainties of the dark matter distribution are also included in the likelihood. We further discuss the isospin violating cases of the interactions. Finally, for both dimension-five and dimension-six effective theories above the electroweak scale, we give updated limits of the new physics mass scales.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have