Abstract

A combined air cycle is designed for internal combustion (IC) engine supercharging, which consists of IC engine working cycle and bottom cycle of waste heat recovery (WHR). The bottom cycle uses IC engine exhaust gas as cycle heat source, and its output power is used to drive the gas compressor. Both the heat transfer and thermodynamic processes of combined air cycle were investigated by numerical calculation under various cycle parameters and IC engine operating conditions. On this basis, the performances of combined air cycle and the improvement to IC engine performances were analyzed. Results show that, the cycle efficiency and exhaust gas energy recovery efficiency depend largely on the working pressure, and their maximum values appear at the working pressure of 0.35MPa and 0.2MPa, respectively. Compared with the naturally aspirated (NA) engine and turbocharging engine, this approach can make the fuel utilization efficiency of IC engine increase by 8.9% points and 4.1% points at most, respectively, due to the reduction of exhaust gas pressure. All these demonstrate that the proposed concept is a potentially useful approach for IC engine energy saving.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.