Abstract
We introduce the abstract notion of a necklical set in order to describe a functorial combinatorial model of the path fibration over the geometric realization of a path connected simplicial set. In particular, to any path connected simplicial set X we associate a necklical set \({\widehat{{\varvec{\Omega }}}}X\) such that its geometric realization \(|{\widehat{{\varvec{\Omega }}}}X|\), a space built out of gluing cubical cells, is homotopy equivalent to the based loop space on |X| and the differential graded module of chains \(C_*({\widehat{{\varvec{\Omega }}}}X)\) is a differential graded associative algebra generalizing Adams’ cobar construction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.