Abstract
We prove that for any 1-reduced simplicial set X, Adams' cobar construction, on the normalised chain complex of X is naturally a strong deformation retract of the normalised chains CGX on the Kan loop group GX, opening up the possibility of applying the tools of homological algebra to transfering perturbations of algebraic structure from the latter to the former. In order to prove our theorem, we extend the definition of the cobar construction and actually obtain the existence of such a strong deformation retract for all 0-reduced simplicial sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.