Abstract
We propose a novel approach to solve systems of multivariate polynomial equations, using the column space of the Macaulay matrix that is constructed from the coefficients of these polynomials. A multidimensional realization problem in the null space of the Macaulay matrix results in an eigenvalue problem, the eigenvalues and eigenvectors of which yield the common roots of the system. Since this null space based algorithm uses well-established numerical linear algebra tools, like the singular value and eigenvalue decomposition, it finds the solutions within machine precision. In this paper, on the other hand, we determine a complementary approach to solve systems of multivariate polynomial equations, which considers the column space of the Macaulay matrix instead of its null space. This approach works directly on the data in the Macaulay matrix, which is sparse and structured. We provide a numerical example to illustrate our new approach and to compare it with the existing null space based root-finding algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.