Abstract

Social insect colonies’ robust and efficient collective behaviors without any central control contribute greatly to their ecological success. Colony migration is a leading subject for studying collective decision-making in migration. In this paper, a general colony migration model with Hill functions in recruitment is proposed to investigate the underlying decision making mechanism and the related dynamical behaviors. Our analysis provides the existence and stability of equilibrium, and the global dynamical behavior of the system. To understand how piecewise functions and Hill functions in recruitment impact colony migration dynamics, the comparisons are performed in both analytic results and bifurcation analysis. Our theoretical results show that the dynamics of the migration system with Hill functions in recruitment differs from that of the migration system with piecewise functions in the following three aspects: (1) all population components in our colony migration model with Hill functions in recruitment are persistent; (2) the colony migration model with Hill functions in recruitment has saddle and saddle-node bifurcations, while the migration system with piecewise functions does not; (3) the system with Hill functions has only equilibrium dynamics, i.e. either has a global stability at one interior equilibrium or has bistablity among two locally stable interior equilibria. Bifurcation analysis shows that the geometrical shape of the Hill functions greatly impacts the dynamics: (1) the system with flatter Hill functions is less likely to exhibit bistability; (2) the system with steeper functions is prone to exhibit bistability, and the steady state of total active workers is closer to that of active workers in the system with piecewise function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call