Abstract
This paper studied a collaborative decision model to optimize electricity flow among commercial buildings, electric vehicle (EV) charging stations, and the grid under power demand uncertainty. We propose a two-stage stochastic programming model that realistically captures different operational constraints between multiple commercial buildings and EV charging stations. We developed a customized solution approach based on Sample Average Approximation method that can solve the proposed model efficiently and accurately. Finally, a real-life case study is constructed that draws managerial insights into how different key input parameters (e.g., grid power unavailability, power collaboration restriction) affect the overall energy network design and cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.