Abstract

The multi-energy system is a promising energy-efficient technology to supply electric and thermal energy to end-users simultaneously, which can realize the energy cascade utilization. However, it is challenging to optimize the operation of multi-energy systems due to their inherent structural complexity, as well as the highly coupled nature of multiple energy flows and the uncertainty of renewable energy generation. This paper proposed a collaborative demand-controlled operation strategy for a multi-energy system, which consists of an upper-level model and a lower-level model. In the upper-level model, a robust linear optimization method is adopted to optimize the system operation in a day-ahead stage. In the lower-level model, a stochastic rolling optimization method is applied to achieve a dynamic adjustment to cope with the fluctuation in both renewable electricity generation and electric load. The multiple energy demand-controlled strategy is also applied in the optimal operation strategy to achieve load shifting and to create flexibility in energy demand despite the “source-load” imbalance power fluctuation. A case study is carried out and simulation results verify the effectiveness and correctness of the proposed model of the coordinated operation framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.