Abstract

As biomedical citizen science initiatives become more prevalent, the unique ethical issues that they raise are attracting policy attention. The ethical oversight of bottom-up biomedical citizen science projects that are designed and executed primarily or solely by members of the public is a significant concern because the federal rules that require ethical oversight of research by institutional review boards generally do not apply to such projects, creating what has been called an ethics gap. Working to close this gap, practitioners and scholars have considered new mechanisms of ethical oversight for biomedical citizen science. To date, however, participants' attitudes about ethics and oversight preferences have not been systematically examined. This information is useful to efforts to develop ethical oversight mechanisms because it provides a basis for evaluating the likely effectiveness of specific features of such mechanisms and their acceptability from the perspective of biomedical citizen scientists. Here, we report data from qualitative interviews with 35 stakeholders in bottom-up biomedical citizen science about their general ethics attitudes and preferences regarding ethical oversight. Interviewees described ten ethical priorities and endorsed oversight mechanisms that are voluntary, community-driven, and offer guidance. Conversely, interviewees rejected mechanisms that are mandatory, hierarchical, and inflexible. Applying these findings, we conclude that expert consultation and community review models appear to align well with ethical priorities and oversight preferences of many biomedical citizen scientists, although local conditions should guide the development and use of mechanisms in specific communities.

Highlights

  • The idea of citizen science is not new, in recent decades, it has become a popular approach to research

  • Some examples of bottom-up biomedical citizen science projects include an online platform for individuals to publicly share their genotyping results and phenotypic information for personal exploration and research use; a community laboratory project to sequence the genome of a cuttlefish; a three-person effort to reverse engineer a gene-therapy drug; a collaboration involving multiple community laboratories to develop a process for generic manufacture of insulin; and a citizen science collaborative involving individuals self-manufacturing and self-injecting putative vaccines

  • In fall 2019, we conducted in-depth qualitative interviews with individuals engaged in biomedical citizen science projects at two conferences: Biohack the Planet, held in Las Vegas, NV, which is a conference “run by BioHackers, designed for BioHackers, with talks solicited from BioHackers” (Kamau 2017), and the Global Community Bio Summit, held in Cambridge, MA, which is “a space for the global community of DIY biologists/community biologists/biohackers/biomakers and members of inde­pendent and community laboratories to convene, plan, build fellowship, and continue the evolution of our movement” (GCBS 2019b)

Read more

Summary

Introduction

The idea of citizen science is not new, in recent decades, it has become a popular approach to research. That approach generally describes the meaningful involvement of members of the public—known as citizen scientists—in the research process. Citizen scientists contribute to research in personal rather than professional capacities and might not have advanced scientific training relevant to the projects they support (Eitzel et al 2017). There are examples of citizen science projects in many scientific disciplines, including ecology, astronomy, biology, and medicine (Bonetta 2009). The biomedical citizen science landscape in particular is diverse and encompasses projects with various objectives, organized according to a wide range of designs, and taking place in traditional and nontraditional settings that include participants’ homes and community laboratories (Fiske et al 2019; Wiggins and Wilbanks 2019). Some examples of bottom-up biomedical citizen science projects include an online platform for individuals to publicly share their genotyping results and phenotypic information for personal exploration and research use; a community laboratory project to sequence the genome of a cuttlefish; a three-person effort to reverse engineer a gene-therapy drug; a collaboration involving multiple community laboratories to develop a process for generic manufacture of insulin; and a citizen science collaborative involving individuals self-manufacturing and self-injecting putative vaccines (bioCURIOUS n.d.; Greshake et al 2014; Gallegos et al 2018; Guerrini et al 2020a; Talbot 2020)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call