Abstract

Making progress toward human-level artificial intelligence often seems to require a large number of difficult-to-integrale computational methods and enormous amounts of knowledge about the world. This article provides evidence from linguistics, cognitive psychology, and neuroscience for the cognitive substrate hypothesis that a relatively small set of properly integrated data structures and algorithms can underlie the whole range of cognition required for human-level intelligence. Some computational principles (embodied in the Polyscheme cognitive architecture) are proposed to solve the integration problems involved in implementing such a substrate. A natural language syntactic parser that uses only the mechanisms of an infant physical reasoning model developed in Polyscheme demonstrates that a single cognitive substrate can underlie intelligent systems in superficially very dissimilar domains. This work suggests that identifying and implementing a cognitive substrate will accelerate progress toward human-level artificial intelligence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.