Abstract

Numerical calculation of a simple accretion model including the effects of tidal friction indicate that coformation is tenable only if the planet's Q is less than about 10 3. The parameter which most strongly affects the final mass ratio of the pair is the time at which the secondary embryo is introduced. Our model yields the proper Moon-Earth mass ratio if the Moon embryo is introduced when the Earth is only about 1 10 of its final mass. The lunar orbit remains at about 10 Earth radii throughout most of the growth. This model of satellite formation overcomes two difficulties of the “circumterrestrial cloud” model of Ruskol (1960, 1963, 1972): (1) The difficulty of accumulating a mass as great as the entire Moon before gravitational instability reduces the cloud to a small number of moonlets is removed. (2) The differences between terrestrial and outer planet satellite systems is easily understood in terms of the differences in Q between these planets. The high Q of the outer planets does not allow a satellite embryo to survive a significant portion of the accretion process, thus only small bodies which formed very late in the accumulation of the planet remain as satellites. The low Q of the terrestrial planets allows satellite embryos of these planets to survive during accretion, thus massive satellites such as the Earth's Moon are expected. The present lack of such satellites of the other terrestrial planets may be the result of tidal evolution, either infall following primary despinning (Burns, 1973) or escape due to increase in orbit eccentricity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.