Abstract

A dominant-pole substitution (DPS) technique for low-dropout regulator (LDO) is proposed in this paper. The DPS technique involves signal-current feedforward and amplification such that an ultralow-frequency zero is generated to cancel the dominant pole of LDO, while a higher frequency pole substitutes in and becomes the new dominant pole. With DPS, the loop bandwidth of the proposed LDO can be significantly extended, while a standard value and large output capacitor for transient purpose can still be used. The resultant LDO benefits from both the fast response time due to the wide loop bandwidth and the large charge reservoir from the output capacitor to achieve the significant enhancement in the dynamic performances. Implemented with a commercial 0.18-μm CMOS technology, the proposed LDO with DPS is validated to be capable of delivering 100 mA at 1.0-V output from a 1.2-V supply, with current efficiency of 99.86%. Experimental results also show that the error voltage at the output undergoing 100 mA of load transient in 10-ns edge time is about 25 mV. Line transient responses reveal that no more than 20-mV instantaneous changes at the output when the supply voltage swings between 1.2 and 1.8 V in 100 ns. The power-supply rejection ratio at 3 MHz is −47 dB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.