Abstract

We report a photonic temperature sensor with enhanced performance in both broad- and narrow-bandwidth optical measurements. The device consists of a heterogeneously integrated Mach–Zehnder interferometer with arms composed of silicon and silicon nitride waveguides whose thermo-optic coefficients differ by an order of magnitude. The waveguides are fabricated in distinct layers of a monolithic device and guide light in a single transverse-electric mode. The resulting small bend radii enable compact sensing of temperatures local to integrated photonic components with a device footprint of 580 × 410 μm2. Furthermore, the dual layers of the sensor enable overlaying of the spiral arms of the interferometer over each other or other photonic circuit components. We measure a sensitivity of 324 pm/K, an over threefold enhancement compared to the measurement of an asymmetric Mach–Zehnder constructed of silicon waveguides on the same device. We additionally define a useful figure of merit for the side-of-fringe measurement regime, which uses direct detection of a narrow linewidth laser and show that the reported device is also competitive on this metric.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call