Abstract

We generalize Ehrhart's idea of counting lattice points in dilated rational polytopes: Given a rational simplex, that is, an $n$-dimensional polytope with $n+1$ rational vertices, we use its description as the intersection of $n+1$ halfspaces, which determine the facets of the simplex. Instead of just a single dilation factor, we allow different dilation factors for each of these facets. We give an elementary proof that the lattice point counts in the interior and closure of such a vector-dilated simplex are quasipolynomials satisfying an Ehrhart-type reciprocity law. This generalizes the classical reciprocity law for rational polytopes. As an example, we derive a lattice point count formula for a rectangular rational triangle, which enables us to compute the number of lattice points inside any rational polygon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.