Abstract
For the future energy system, we propose a new closed nuclear energy cycle system, which consists of an accelerator-driven external neutron source, a ceramic reactor and an extend AIROX reprocessing. The attractive features of this system are as follows. (1) The operating mode of the reactor is a combination of subcritical mode and critical mode. Initially, the reactor would be driven by the accelerator external neutron source in subcritical mode. A few years later, the reactor would reach the critical mode, and then would operate for a long time. (2) Nuclear fuels, coolants, and structure materials in the ceramic reactor core are made up of ceramic with excellent thermodynamics properties and neutron performance. Therefore, the ceramic reactor has extremely inherent safety, good breeding performance and high power generation efficiency. (3) Fuel reprocessing uses an extend AIROX reprocessing, which is a simple high-temperature dry process and rarely involved in chemical process. In this reprocessing, only most of fission products are separated. Other isotopes, including uranium isotopes, transuranic nuclides and long-lived fission products, would re-enter the reactor as new fuels. Therefore, this closed nuclear energy system could be known as ADANES, short for Accelerator-Driven Advanced Nuclear Energy System, which can greatly improve the utilization rate of nuclear fuels, enhance the nuclear safety, reduce the nuclear proliferation and become a sustainable and low-carbon energy supply for thousands of years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.