Abstract

A closed-form model for electrostatic potential distribution in the direction normal to the channel for double-gate (DG) MOSFETs is presented. The effects of doping (NA for nMOS) and minority carriers both are taken into account for the first time, in solving Poisson's equation analytically. Excellent agreement between model-predicted results and numerical device simulation is achieved for a wide range of body thickness, light or high channel-doping, under various bias conditions. This complete closed form for position-dependent potential distribution has wide applications for MOS compact modelling and device design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.