Abstract
Inverse dynamic analysis is a technique used during gait analysis to estimate intersegmental forces and net joint moments. Inverse dynamic calculations are susceptible to various forms of error. One such error is force plate drift, often produced by humidity condensing within the input connectors and electronics, causing an undesired change in output over time. This can be particularly concerning for movement laboratories where inverse dynamics are considered in clinical decision-making processes. Manufacturers will provide tolerance levels for drift. However, levels of acceptable drift are rarely considered from a clinical perspective. Therefore, this study aims to establish clinically acceptable limits of force plate drift error, induced by applying systematic errors to force plate channels, on predicted lower limb joint moments during gait. Gait data of 10 children with typical development were analysed and induced errors of 0.5 N, 1 N, 1.5 N, 3 N, 6 N and 12 N were incrementally applied to the horizontal and vertical force channels. Data were recalculated for each increment and mean profiles compared to an error free mean (±1SD) band. Error was deemed clinically significant when moments fell outside the mean (±1SD) band. Induced error at 6 N and above was sufficient to cause a clinically significant change. Sagittal and coronal plane moments at the hip were most affected, followed by the knee and then the ankle. While manufacturer guidelines for acceptable drift are usually well below 6 N, care is needed when using force plates over several minutes or more as drift may eventually exceed clinically acceptable limits.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have