Abstract

Abstract. With an increased share of solar and wind energy e.g. in the German and European energy systems it is becoming increasingly important to analyze the impact of weather variability on the reliability of the energy production. In this study, we calculate solar PV and wind power capacity factors using two recently developed climatological datasets that provide information with high spatial and temporal details on the continental (European) scale and are of sufficient length for assessments at climatological time scales: Surface radiation derived from meteorological satellites (SARAH-2) and wind speed from a high-resolution regional reanalysis (COSMO-REA6). Balancing effects are analysed: On average, the seasonal cycles of PV and wind power production complement each other in Germany as well as in Europe. The frequency of events with a risk of low electricity generation is analyzed under different assumptions. When using wind energy over German land areas as a reference case, the results illustrate that the number of low production events is reduced when Germany's Exclusive Economic Zone is included into the analysis, or when a combined system of PV and wind energy is considered. A European-wide analysis also leads to a distinct reduction of such events.

Highlights

  • Germany as well as the European Union aim at extending the share of renewable energy in the electricity sectors (for Germany see German Renewable Energy Sources Act (Bundesministerium für Justiz und Verbraucherschutz, 2017); for the European Union: Renewable Energy Directive, European Union, 2018)

  • We calculate solar PV and wind power capacity factors using two recently developed climatological datasets that provide information with high spatial and temporal details on the continental (European) scale and are of sufficient length for assessments at climatological time scales: Surface radiation derived from meteorological satellites (SARAH-2) and wind speed from a high-resolution regional reanalysis (COSMO-REA6)

  • When using wind energy over German land areas as a reference case, the results illustrate that the number of low production events is reduced when Germany’s Exclusive Economic Zone is included into the analysis, or when a combined system of PV and wind energy is considered

Read more

Summary

Introduction

Germany as well as the European Union aim at extending the share of renewable energy in the electricity sectors (for Germany see German Renewable Energy Sources Act (Bundesministerium für Justiz und Verbraucherschutz, 2017); for the European Union: Renewable Energy Directive, European Union, 2018). Graabak and Korpås (2016a) reviewed existing studies on the role of the Nordic hydropower systems for balancing and storage in a future Northern/Central European power system One of their conclusions was that uncertainties in simulations of the future energy system can still be reduced by modelling the system with higher spatial and temporal resolution. New data sources with consistent quality and high spatial and temporal resolution over the last decades became available as a result of recent activities: They are based on meteorological satellites and model-based reanalysis and are available for Europe at a resolution of a few kilometers and with hourly resolution (or better) Specific versions of such datasets are used here in combination to illustrate the potential of these new open data products (of DWD and EUMETSAT’s CM SAF) for energy related applications.

Datasets
Radiation
Wind: COSMO-REA6
Methodology
Photovoltaics
Validation
Averaging and aggregation
Spatial distribution
Seasonal cycle
Frequency of low production events
Discussion and conclusions
126 Appendix A
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call