Abstract

Backdoor attacks in the traditional graph neural networks (GNNs) field are easily detectable due to the dilemma of confusing labels. To explore the backdoor vulnerability of GNNs and create a more stealthy backdoor attack method, a clean-label graph backdoor attack method(CGBA) in the node classification task is proposed in this paper. Differently from existing backdoor attack methods, CGBA requires neither modification of node labels nor graph structure. Specifically, to solve the problem of inconsistency between the contents and labels of the samples, CGBA selects poisoning samples in a specific target class and uses the samples’ own label as the target label (i.e., clean-label) after injecting triggers into the target samples. To guarantee the similarity of neighboring nodes, the raw features of the nodes are elaborately picked as triggers to further improve the concealment of the triggers. Extensive experiments results show the effectiveness of our method. When the poisoning rate is 0.04, CGBA can achieve an average attack success rate of 87.8%, 98.9%, 89.1%, and 98.5%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.