Abstract
Hamilton-Jacobi (HJ) reachability analysis has been developed over the past decades into a widely-applicable tool for determining goal satisfaction and safety verification in nonlinear systems. While HJ reachability can be formulated very generally, computational complexity can be a serious impediment for many systems of practical interest. Much prior work has been devoted to computing approximate solutions to large reachability problems, yet many of these methods may only apply to very restrictive problem classes, do not generate controllers, and/or can be extremely conservative. In this paper, we present a new method for approximating the optimal controller of the HJ reachability problem for control-affine systems. While also a specific problem class, many dynamical systems of interest are, or can be well approximated, by control-affine models. We explicitly avoid storing a representation of the reachability value function, and instead learn a controller as a sequence of simple binary classifiers. We compare our approach to existing grid-based methodologies in HJ reachability and demonstrate its utility on several examples, including a physical quadrotor navigation task.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.