Abstract

In this letter, we seek to build connections between control Lyapunov functions (CLFs) and Hamilton-Jacobi (HJ) reachability analysis. CLFs have been used extensively in the control community for synthesizing stabilizing feedback controllers. However, there is no systematic way to construct CLFs for general nonlinear systems and the problem can become more complex with input constraints. HJ reachability is a formal method that can be used to guarantee safety or reachability for general nonlinear systems with input constraints. The main drawback is the well-known “curse of dimensionality.” In this letter we modify HJ reachability to construct what we call a control Lyapunov-Value Function (CLVF) which can be used to find and stabilize to the smallest control invariant set <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$(\mathcal I_{m}^{\infty })$ </tex-math></inline-formula> around a point of interest. We prove that the CLVF is the viscosity solution to a modified HJ variational inequality (VI), and can be computed numerically, during which the input constraints and exponential decay rate <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\gamma $ </tex-math></inline-formula> are incorporated. This process identifies the region of exponential stability to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathcal I_{m}^{\infty }$ </tex-math></inline-formula> given the desired input bounds and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\gamma $ </tex-math></inline-formula> . Finally, a feasibility-guaranteed quadratic program (QP) is proposed for online implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.