Abstract
Many of the known ovoids and spreads of finite polar spaces admit a transitive group of collineations, and in 1988, P. Kleidman classified the ovoids admitting a 2-transitive group. A. Gunawardena has recently extended this classification by determining the ovoids of the seven-dimensional hyperbolic quadric which admit a primitive group. In this paper we classify the ovoids and spreads of finite polar spaces which are stabilised by an insoluble transitive group of collineations, as a corollary of a more general classification of m-systems admitting such groups.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have