Abstract

Existence of amplitude independent frequencies of oscillation is an unusual property for a nonlinear oscillator. We find that a class of N coupled nonlinear Liénard type oscillators exhibit this interesting property. We show that a specific subset can be explicitly solved from which we demonstrate the existence of periodic and quasiperiodic solutions. Another set of N coupled nonlinear oscillators, possessing the amplitude independent nature of frequencies, is almost integrable in the sense that the system can be reduced to a single nonautonomous first order scalar differential equation which can be easily integrated numerically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.