Abstract

Piecewise interpolation methods, as spline or Hermite cubic interpolation methods, define the interpolant function by means of polynomial pieces and ensure that some regularity conditions are guaranteed at the break-points. In this work, we propose a novel class of piecewise interpolating functions whose expression depends on the barycentric coordinates and a suitable weight function. The underlying idea is to specialize to the 1D settings some aspects of techniques widely used in multi-dimensional interpolation, namely Shepard’s, barycentric and triangle-based blending methods. We show the properties of convergence for the interpolating functions and discuss how, in some cases, the properties of regularity that characterize the weight function are reflected on the interpolant function. Numerical experiments, applied to some case studies and real scenarios, show the benefit of our method compared to other interpolant models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.