Abstract

This paper establishes a theory framework of a class of nonlinear Lagrangians for solving nonlinear programming problems with inequality constraints. A set of conditions are proposed to guarantee the convergence of nonlinear Lagrangian algorithms, to analyze condition numbers of nonlinear Lagrangian Hessians as well as to develop the dual approaches. These conditions are satisfied by well-known nonlinear Lagrangians appearing in literature. The convergence theorem shows that the dual algorithm based on any nonlinear Lagrangian in the class is locally convergent when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions and the error bound solution, depending on the penalty parameter, is also established. The paper also develops the dual problems based on the proposed nonlinear Lagrangians, and the related duality theorem and saddle point theorem are demonstrated. Furthermore, it is shown that the condition numbers of Lagrangian Hessians at optimal solutions are proportional to the controlling penalty parameters. We report some numerical results obtained by using nonlinear Lagrangians.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.