Abstract
A class of methods is presented for solving standard linear programming problems. Like the simplex method, these methods move from one feasible solution to another at each iteration, improving the objective function as they go. Each such feasible solution is also associated with a basis. However, this feasible solution need not be an extreme point and the basic solution corresponding to the associated basis need not be feasible. Nevertheless, an optimal solution, if one exists, is found in a finite number of iterations (under nondegeneracy). An important example of a method in the class is the reduced gradient method with a slight modification regarding selection of the entering variable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.