Abstract
In a recent paper, Ganesan and Veermani [K. Ganesan, P. Veeramani, Fuzzy linear programs with trapezoidal fuzzy numbers, Ann. Oper. Res. 143 (2006) 305–315] considered a kind of linear programming involving symmetric trapezoidal fuzzy numbers without converting them to the crisp linear programming problems and then proved fuzzy analogues of some important theorems of linear programming that lead to a new method for solving fuzzy linear programming (FLP) problems. In this paper, we obtain some another new results for FLP problems. In fact, we show that if an FLP problem has a fuzzy feasible solution, it also has a fuzzy basic feasible solution and if an FLP problem has an optimal fuzzy solution, it has an optimal fuzzy basic solution too. We also prove that in the absence of degeneracy, the method proposed by Ganesan and Veermani stops in a finite number of iterations. Then, we propose a revised kind of their method that is more efficient and robust in practice. Finally, we give a new method to obtain an initial fuzzy basic feasible solution for solving FLP problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.