Abstract
The intensive interest in expanded porphyrins can be attributed to their appealing photoelectric and coordination behavior. In this work, an N-confused heptaphyrin 1 was synthesized by an acid-catalyzed [3+4] condensation reaction. The introduction of an N-confused pyrrolic unit into the heptaphyrin macrocycle led to the formation of a figure-eight-like conformation with nonsymmetrical "NNNN" and "NNNC" coordination cavities employable for bimetallic coordination. As a result, chelation of 1 with Zn(II) and Cu(II) afforded mono-Zn(II) complex 2 and bis-Cu(II) complex 3, respectively, with the metal atoms exhibiting distorted square-planar geometries. In complex 3, an oxygen atom is attached to the α-C atom of N-confused pyrrole D, and thus the N and C atoms of ring D participate in coordination within the two cavities. Interestingly, treatment of 1 with Cs2CO3 in MeOH resulted in regioselective substitution of all the seven para-F atoms in the meso-C6F5 groups as well as the α-H of ring D by eight methoxy moieties. Complex 3 displays a red-shifted absorption band edge of ca. 2200 nm, compared to that of ca. 1600 nm observed for 1. This work provides an example of incorporating an N-confused pyrrole to construct expanded porphyrins with distinctive coordination behavior and tunable NIR absorption.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have