Abstract

We prove a useful formula and new properties for the recently introduced power fractional calculus with non-local and non-singular kernels. In particular, we prove a new version of Gronwall’s inequality involving the power fractional integral; and we establish existence and uniqueness results for nonlinear power fractional differential equations using fixed point techniques. Moreover, based on Lagrange polynomial interpolation, we develop a new explicit numerical method in order to approximate the solutions of a rich class of fractional differential equations. The approximation error of the proposed numerical scheme is analyzed. For illustrative purposes, we apply our method to a fractional differential equation for which the exact solution is computed, as well as to a nonlinear problem for which no exact solution is known. The numerical simulations show that the proposed method is very efficient, highly accurate and converges quickly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.