Abstract

In this paper, we study the efficient solution of the nonlinear Schrödinger equation with wave operator, subject to periodic boundary conditions. In such a case, it is known that its solution conserves a related functional. By using a Fourier expansion in space, the problem is at first casted into Hamiltonian form, with the same Hamiltonian functional. A Fourier–Galerkin space semi-discretization then provides a large-size Hamiltonian ODE problem, whose solution in time is carried out by means of energy-conserving methods in the HBVM class (Hamiltonian boundary value methods). The efficient implementation of the methods for the resulting problem is also considered and some numerical examples are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.