Abstract

Two energy-preserving schemes are proposed for the “good” Boussinesq (GBq) equation using the Hamiltonian Boundary Value and Fourier pseudospectral methods. The equation is discretized in space by Fourier pseudospectral method and in time by Hamiltonian Boundary Value methods (HBVMs). The outstanding advantages of the proposed schemes are that they can precisely conserve the global mass and energy, and provide highly accurate results. The single solitary wave, the interaction of two solitary waves and the birth of solitary waves are presented to validate the accuracy and conservation properties of the proposed schemes. In addition, we also compare our numerical results with other known studied methods in terms of numerical accuracy and conservation properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.