Abstract

Protein extracts from soybean (Glycine max [L.] Merr) seed hulls were fractionated by isoelectric focusing and SDS-PAGE analysis and components identified by peptide microsequencing. An abundant 32 kDa protein possessed an N-terminal cysteine-rich hevein domain present in class I chitinases and in other chitin-binding proteins. The protein could be purified from seed coats by single step binding to a chitin bead matrix and displayed chitinase activity by an electrophoretic zymogram assay. The corresponding cDNA and genomic clones for the chitinase protein were isolated and characterized, and the expression pattern determined by RNA blot analysis. The deduced peptide sequence of 320 amino acids included an N-terminal signal peptide and conserved chitin-binding and catalytic domains interspaced by a proline hinge. An 11.3 kb EcoRI genomic fragment bearing the 2.4 kb chitinase gene was fully sequenced. The gene contained two introns and was flanked by A+T-rich tracts. Analysis by DNA blot hybridization showed that this is a single or low copy gene in the soybean genome. The chitinase is expressed late in seed development, with particularly high expression in the seed coat. Expression was also evident in the late stages of development of the pod, root, leaf, and embryo, and in tissues responding to pathogen infection. This study further illustrates the differences in protein composition of the various seed tissues and demonstrates that defence-related proteins are prevalent in the seed coat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.