Abstract

In a mature circular economy model of carbon material, no fossil compound is extracted from the underground. Hence, the C1 molecule from non-fossil sources such as biogas, biomass, or carbon dioxide captured from the air represents the raw material to produce various value-added products through carbon capture and utilization routes. Accordingly, the present work investigates the utilization of the full potential of biogas and digestate waste streams derived from anaerobic digestion processes available at the European level to generate synthetic Fischer–Tropsch products focusing on the wax fraction. This study estimates a total amount of available carbon dioxide of 33.9 MtCO2/y from the two above-mentioned sources. Of this potential, 10.95 MtCO2/y is ready-to-use as separated CO2 from operating biogas-upgrading plants. Similarly, the total amount of ready-to-use wet digestate corresponds to 29.1 Mtdig/y. Moreover, the potential out-take of Fischer–Tropsch feedstock was evaluated based on process model results. Utilizing the full biogas plants’ carbon potential available in Europe, a total of 10.1 Mt/h of Fischer–Tropsch fuels and 3.86 Mt/h of Fischer–Tropsch waxes can be produced, covering up to 79% of the global wax demand. Utilizing only the streams derived from biomethane plants (installed in Europe), 136 ton/h of FT liquids and 48 ton/h of FT wax can be generated, corresponding to about 8% of the global wax demand. Finally, optimal locations for cost-effective Fischer–Tropsch wax production were also identified.

Highlights

  • Carbon capture and utilization (CCU) routes allow converting waste CO2 and carbon compounds into marketable products (Pérez-Fortes et al, 2014)

  • The data listed in the European Biomethane Map were considered for all the biomethane plants connected to the EU gas grid (European Biogas Association, 2020), where biomethane plants were considered biogas plants with an upgrading technology installed to separate CH4 and CO2

  • The analysis shows a total potential out-take of carbon dioxide from biogas of 4.23 kton/h and of digestate of 2.79 kton/h

Read more

Summary

Introduction

Carbon capture and utilization (CCU) routes allow converting waste CO2 and carbon compounds into marketable products (Pérez-Fortes et al, 2014). Within CCU, the paradigm of circularity of carbon material is currently being promoted as a forecasted solution to reduce fossil fuel consumption (Lehtonen et al, 2019). This applies especially in the European Union, where circularity becomes a prerequisite in achieving carbon neutrality and enhancing the penetration of renewable electricity in sectors other than the energy one (EC, 2020). This concept allows shifting from the business-as-usual linear production model to a self-sustained circular pattern where waste is upgraded to a commodity status. Concerning carbon-based materials, this means extracting fossil hydrocarbons from the ground for one-time use before turning them into wastes

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.