Abstract

Poor osteogenesis caused by limited bioactivity and peri-implantitis caused by bacterial colonization are the main challenges affecting the use of zirconia-based materials in dental implants. Accordingly, the development of a surface treatment method with an antibacterial effect and that promotes osteogenesis without damage to cells is crucial for yttrium-stabilized tetragonal zirconia (Y-TZP) implants. Herein, we have developed a functional surface modification strategy whereby a poly (ethylene imine)/hyaluronic acid /chitosan-chlorogenic acid (PEI/HA/CGA-CS) conjugate is deposited on a zirconia surface by the layer-by-layer (LBL) technique, enhancing its osteogenic differentiation and antibacterial activities. The results showed that the PEI/HA/CGA-CS coating improved the wettability of the zirconia surface and maintained stable release of CGA. The PEI/HA/CGA-CS functional coating was found to promote early cell adhesion, proliferation, differentiation, and calcification. The results of bacterial adhesion and activity tests showed that the coating effectively inhibits the proliferation and activity of Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) without impairing the biological activity of osteoblasts. In addition, we found that the PEI/HA/CGA-CS coating enhances the osteogenesis of MC3T3-E1 cells by promoting the protein expression of Nephronectin (NPNT) and activating the Wnt/β-catenin signaling pathway. The above results are of profound significance for the practical application of zirconia-based implants. DATA AVAILABILITY: Data will be made available on request.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call