Abstract

The understanding of telomeres is expected to provide major insights into genome stability, cancer, and telomere-related diseases. In recent years, there have been considerable improvements in the technologies available to determine the length of telomeres of human chromosomes; however, the present methods for measuring telomere length are fraught with shortcomings that have limited their use. Here we describe a method for detection of individual telomere lengths (DITL) that uses a chemistry-based approach that accurately measures the telomere lengths from individual chromosomes. The method was successfully used to determine telomere DNA by breaking in the target sequence and producing a "real telomere fragment." The DITL approach involves cleavage of the sequence adjacent to the telomere followed by resolution of the telomere length at the nucleotide level of a single chromosome. Comparison of the DITL method and the traditional terminal restriction fragment (TRF) analysis indicates that the DITL approach appears to be promising for the quantification of telomere repeats in each chromosome and the detection of accurate telomere lengths that can be missed using TRF analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.