Abstract

Molecular motors play a central role in many biological processes, ranging from pumping blood and breathing to growth and wound healing. Through motor-catalyzed chemical reactions, these nanomachines convert the chemical free energy from ATP hydrolysis into two different forms of mechanical work. Motor enzymes perform reversible work, wrev, through an intermediate step in their catalyzed reaction cycle referred to as a working step, and they perform Fx work when they move a distance, x, against a force, F. In a powerstroke model, wrev is performed when the working step stretches a spring within a given motor enzyme. In a chemical-Fx model, wrev is performed in generating a conserved Fx potential defined external to the motor enzyme. It is difficult to find any common ground between these models even though both have been shown to account for mechanochemical measurements of motor enzymes with reasonable accuracy. Here, I show that, by changing one simple assumption in each model, the powerstroke and chemical-Fx model can be reconciled through a chemical thermodynamic model. The formal and experimental justifications for changing these assumptions are presented. The result is a unifying model for mechanochemical coupling in motor enzymes first presented by A.V. Hill in 1938 that is consistent with single-molecule structural and mechanical data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.