Abstract

Chemical thermodynamic model is introduced to evaluate ecological effects of ocean acidification, which is predicted from increasing ocean uptake of carbon dioxide. The chemical model contains metal complex formation with two types of dissolved organic ligands in seawater. Concentration responses of copper and iron species in seawater to pH decrease were simulated. Free copper ion concentration, whose level is closely related to toxicity to phytoplankton, shows no response to ocean acidification as buffering effects by organic ligands. Ocean acidification leads to increase of bio-available iron (organic iron complex) in seawater, which causes increasing marine primarily production and following export flux of carbon into ocean interior. Chemical model regarding bioactive trace metals suggests presence of a negative feedback to the rising atmospheric CO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.