Abstract
We study 2-dimensional submanifolds of the space \({\mathbb{L}}({\mathbb{H}}^{3})\) of oriented geodesics of hyperbolic 3-space, endowed with the canonical neutral Kähler structure. Such a surface is Lagrangian iff there exists a surface in ℍ3 orthogonal to the geodesics of Σ.We prove that the induced metric on a Lagrangian surface in \({\mathbb{L}}({\mathbb{H}}^{3})\) has zero Gauss curvature iff the orthogonal surfaces in ℍ3 are Weingarten: the eigenvalues of the second fundamental form are functionally related. We then classify the totally null surfaces in \({\mathbb{L}}({\mathbb{H}}^{3})\) and recover the well-known holomorphic constructions of flat and CMC 1 surfaces in ℍ3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.