Abstract

Laboratory demonstrations of brain-computer interface (BCI) systems show promise for reducing disability associated with paralysis by directly linking neural activity to the control of assistive devices. Surveys of potential users have revealed several key BCI performance criteria for clinical translation of such a system. Of these criteria, high accuracy, short response latencies, and multi-functionality are three key characteristics directly impacted by the neural decoding component of the BCI system, the algorithm that translates neural activity into control signals. Building a decoder that simultaneously addresses these three criteria is complicated because optimizing for one criterion may lead to undesirable changes in the other criteria. Unfortunately, there has been little work to date to quantify how decoder design simultaneously affects these performance characteristics. Here, we systematically explore the trade-off between accuracy, response latency, and multi-functionality for discrete movement classification using two different decoding strategies–a support vector machine (SVM) classifier which represents the current state-of-the-art for discrete movement classification in laboratory demonstrations and a proposed deep neural network (DNN) framework. We utilized historical intracortical recordings from a human tetraplegic study participant, who imagined performing several different hand and finger movements. For both decoders, we found that response time increases (i.e., slower reaction) and accuracy decreases as the number of functions increases. However, we also found that both the increase of response times and the decline in accuracy with additional functions is less for the DNN than the SVM. We also show that data preprocessing steps can affect the performance characteristics of the two decoders in drastically different ways. Finally, we evaluated the performance of our tetraplegic participant using the DNN decoder in real-time to control functional electrical stimulation (FES) of his paralyzed forearm. We compared his performance to that of able-bodied participants performing the same task, establishing a quantitative target for ideal BCI-FES performance on this task. Cumulatively, these results help quantify BCI decoder performance characteristics relevant to potential users and the complex interactions between them.

Highlights

  • Intracortical brain-computer interface (BCI) systems that link neural activity to the control of assistive devices have the potential to reduce disability associated with paralysis (Lebedev, 2014; Chaudhary et al, 2016)

  • The accuracy, response time, and number of functions are important characteristics of a BCI system that are directly influenced by the neural decoding algorithm

  • We found that the deep neural network (DNN) has several advantages over the support vector machine (SVM) including reduced data pre-processing requirements and less performance degradation with additional movements

Read more

Summary

Introduction

Intracortical brain-computer interface (BCI) systems that link neural activity to the control of assistive devices have the potential to reduce disability associated with paralysis (Lebedev, 2014; Chaudhary et al, 2016). In anticipation of BCI systems transitioning from laboratory demonstration to clinical usage, it is important to consider the priorities of the end user to ensure widespread adoption. Surveys of potential users have revealed that high accuracy, fast response times, and multi-functionality are among the most desired features for a BCI system (Huggins et al, 2011, 2015; Collinger et al, 2013a; Kageyama et al, 2014). The response time–the time between the user intending to act and the BCI identifying the user’s intention– is crucial for BCI user’s sense of agency (the feeling of being in control of the BCI action; Evans et al, 2015; Moore, 2016; Sitaram et al, 2017)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call