Abstract

This study aimed to find effective approaches to electroencephalographic (EEG) signal analysis and resolve problems of real and imaginary finger movement pattern recognition and categorization for one hand. Eight right-handed subjects (mean age 32.8 [SD=3.3] years) participated in the study, and activity from sensorimotor zones (central and contralateral to the movements/imagery) was recorded for EEG data analysis. In our study, we explored the decoding accuracy of EEG signals using real and imagined finger (thumb/index of one hand) movements using artificial neural network (ANN) and support vector machine (SVM) algorithms for future brain-computer interface (BCI) applications. The decoding accuracy of the SVM based on a Gaussian radial basis function linearly increased with each trial accumulation (mean: 45%, max: 62% with 20 trial summarizations), and the decoding accuracy of the ANN was higher when single-trial discrimination was applied (mean: 38%, max: 42%). The chosen approaches of EEG signal discrimination demonstrated differential sensitivity to data accumulation. Additionally, the time responses varied across subjects and inside sessions but did not influence the discrimination accuracy of the algorithms. This work supports the feasibility of the approach, which is presumed suitable for one-hand finger movement (real and imaginary) decoding. These results could be applied in the elaboration of multiclass BCI systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.