Abstract

The heat shock response controls levels of chaperones and proteases to ensure a proper cellular environment for protein folding. In Escherichia coli, this response is mediated by the bacterial-specific transcription factor, sigma32. The DnaK chaperone machine regulates both the amount and activity of sigma32, thereby coupling sigma32 function to the cellular protein folding state. In this manuscript, we analyze the ability of other major chaperones in E. coli to regulate sigma32, and we demonstrate that the GroEL/S chaperonin is an additional regulator of sigma32. We show that increasing the level of GroEL/S leads to a decrease in sigma32 activity in vivo and this effect can be eliminated by co-overexpression of a GroEL/S-specific substrate. We also show that depletion of GroEL/S in vivo leads to up-regulation of sigma32 by increasing the level of sigma32. In addition, we show that changing the levels of GroEL/S during stress conditions leads to measurable changes in the heat shock response. Using purified proteins, we show that that GroEL binds to sigma32 and decreases sigma32-dependent transcription in vitro, suggesting that this regulation is direct. We discuss why using a chaperone network to regulate sigma32 results in a more sensitive and accurate detection of the protein folding environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call