Abstract
We consider the solution $u(x,t)$ to a stochastic heat equation. For fixed $x$, the process $F(t)=u(x,t)$ has a nontrivial quartic variation. It follows that $F$ is not a semimartingale, so a stochastic integral with respect to $F$ cannot be defined in the classical It\^{o} sense. We show that for sufficiently differentiable functions $g(x,t)$, a stochastic integral $\int g(F(t),t)\,dF(t)$ exists as a limit of discrete, midpoint-style Riemann sums, where the limit is taken in distribution in the Skorokhod space of cadlag functions. Moreover, we show that this integral satisfies a change of variable formula with a correction term that is an ordinary It\^{o} integral with respect to a Brownian motion that is independent of $F$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.