Abstract

This paper presents a chance constrained programming approach to the problem of maximizing the ratio of two linear functions of decision variables which are subject to linear inequality constraints. The coefficient parameters of the numerator of the objective function are assumed to be random variables with a known multivariate normal probability distribution. A deterministic equivalent of the stochastic linear fractional programming formulation has been obtained and a subsidiary convex program is given to solve the deterministic problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.