Abstract
The equilibrium geometries, harmonic frequencies, dipole moments, infrared intensities, and relative energies of the cis-XONO, trans-XONO, and XNO2 (X=F, Cl, and Br) have been investigated using four functionals in common use in Kohn-Sham density functional theory (DFT) calculations. Two of the functionals include non-local or gradient correction terms, while the other two also incorporate some exact Hartree-Fock exchange and are labeled hybrid functionals. The quality of the results obtained from the functionals is determined by comparison to previously published high-level coupled-cluster calculations. The hybrid functionals perform better for prediction of the equilibrium geometries, where the two gradient corrected functionals yield qualitatively incorrect molecular structures for cis-FONO and cis-ClONO. None of the functionals perform well in predicting all six harmonic frequencies, showing that the correlation between equilibrium geometries and harmonic frequencies is not as strong for these DFT methods as it is for conventional wavefunction ab initio methods, such as coupled-cluster theory. Results from the various functionals generally come into better agreement with each other and also with the coupled-cluster results moving down the periodic table.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.