Abstract

Let D ( A ) be the space of set-indexed functions that are outer continuous with inner limits, a generalization of D[0, 1]. This paper proves a central limit theorem for triangular arrays of independent D ( A ) valued random variables. The limit processes are not restricted to be Gaussian, but can be quite general infinitely divisible processes. Applications of the theorem include construction of set-indexed Lévy processes and a unified central limit theorem for partial sum processes and generalized empirical processes. Results obtained are new even for the D[0, 1] case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.