Abstract
In this paper we obtain the central limit theorem for triangular arrays of non-homogeneous Markov chains under a condition imposed to the maximal coefficient of correlation. The proofs are based on martingale techniques and a sharp lower bound estimate for the variance of partial sums. The results complement an important central limit theorem of Dobrushin based on the contraction coefficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.