Abstract

Let Xn be a sequence of integrable real random variables, adapted to a filtration (Gn). Define Cn = √{(1 / n)∑k=1nXk − E(Xn+1 | Gn)} and Dn = √n{E(Xn+1 | Gn) − Z}, where Z is the almost-sure limit of E(Xn+1 | Gn) (assumed to exist). Conditions for (Cn, Dn) → N(0, U) x N(0, V) stably are given, where U and V are certain random variables. In particular, under such conditions, we obtain √n{(1 / n)∑k=1nX_k - Z} = Cn + Dn → N(0, U + V) stably. This central limit theorem has natural applications to Bayesian statistics and urn problems. The latter are investigated, by paying special attention to multicolor randomly reinforced urns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.