Abstract

This note deals with the orthogonality between sequences of random variables. The main idea of the note is to apply the results on equidistant systems of points in a Hilbert space to the case of the space L 2(Ω, F, ℙ) of real square integrable random variables. The main result gives a necessary and sufficient condition for a particular sequence of random variables (elements of which are taken from sets of equidistant elements of L 2(Ω, F, ℙ) to be orthogonal to some other sequence in L 2(Ω, F, ℙ). The result obtained is interesting from the point of view of the time series analysis, since it can be applied to a class of sequences random variables that exhibit a monotonically increasing variance. An application to ergodic theorem is also provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.