Abstract

We determine the contribution of stars in galaxies, intracluster stars, and the intracluster medium to the total baryon budget in nearby galaxy clusters and groups. We find that the baryon mass fraction (f_b) within r500 is constant for systems with M500 between 6e13 and 1e15 Msun. Although f_b is lower than the WMAP value, the shortfall is on the order of both the observational systematic uncertainties and the depletion of baryons within r500 that is predicted by simulations. The data therefore provide no compelling evidence for undetected baryonic components, particularly any that vary in importance with cluster mass. A unique feature of the current analysis is direct inclusion of the contribution of intracluster light (ICL) in the baryon budget. The increase in X-ray gas mass fraction with increasing total mass is entirely accounted for by a decrease in the total stellar mass fraction, supporting the argument that the behavior of both the stellar and X-ray gas components is dominated by a decrease in star formation efficiency in more massive environments. Within just the stellar component, the fraction of the total stellar luminosity in the BCG and ICL decreases as velocity dispersion increases, suggesting that the BCG+ICL component, and in particular the dominant ICL component, grows less efficiently in higher mass environments. The degree to which this behavior arises from our sample selection, which favored systems with central, giant elliptical galaxies, remains unclear. A more robust result is the identification of low mass groups with large BCG+ICL components, demonstrating that the creation of intracluster stars does not require a massive cluster environment. Within r500 and r200, the BCG+ICL contributes on average 40% and 33% of the total stellar light, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.